Основные свойства пищевых продуктов и сырья. Состав и основные свойства пищевых продуктов. Суточная потребность человека в пищевых веществах

05.11.2019 Упражнения для похудения

Пищевые продукты различны по химическому составу, перевариваемости, характеру воздействия на организм человека, что надо учитывать при построении лечебных диет и выборе оптимальных способов кулинарной обработки продуктов. Продукты питания характеризует их пищевая, биологическая и энергетическая ценность. Пищевая ценность - общее понятие, включающее энергоценность продукта, содержание в нем пищевых веществ и степень их усвоения организмом, органолентические достоинства, доброкачественность (безвредность). Более высока пищевая ценность продуктов, химический состав которых в большей степени соответствует принципам сбалансированного питания, а также продуктов - источников незаменимых пищевых веществ. Энергетическая ценность определяется количеством энергии, которую дают пищевые вещества продукта: белки, жиры, усвояемые углеводы, органические кислоты. Биологическая ценность отражает прежде всего качество белков в продукте, их аминокислотный состав, перевариваемость и усвояемость организмом. В более широком смысле в это понятие включают содержание в продукте других жизненно важных веществ (витамины, микроэлементы, незаменимые жирные кислоты).

Различные продукты отличаются по своей пищевой ценности, однако среди них нет вредных или исключительно полезных. Продукты полезны при соблюдении принципов сбалансированного питания, но могут оказать вред при нарушении указанных принципов. Это положение сохраняет свою силу в лечебном питании, хотя в зависимости от заболевания одни продукты в диетах на короткий или продолжительный срок ограничивают, исключаю или допускают после особой кулинарной обработки, а другие считают более предпочтительными.

Среди продуктов питания отсутствуют такие, которые удовлетворяют потребность человека во всех пищевых веществах. Например, молочные продукты бедны витамином C и кроветворными микроэлементами; фрукты и ягоды бедны белками и некоторыми витаминами группы B. Только широкий продуктовый набор обеспечивает организм всеми пищевыми веществами. Расстройства питания организма часто связаны с недостатком или избытком одних продуктов в ущерб другим. Учет этого особенно важен при составле¬нии меню лечебного питания. Можно сравнивать различные продукты по биологической ценности, кулинарным достоинствам и другим показателям, но не противопоставлять их. При сравнении надо принимать во внимание количество используемых в питании продуктов, национальные особенности питания и другие факторы. Например, в красном сладком перце в 5 раз больше витамина C, чем в белокочанной капусте, но последняя в повседневном питании является реальным источником витамина C. При многих заболеваниях не рекомендуется баранина, так как она содержит тугоплавкие жиры. Однако в тех республиках, где баранина является основным видом потребляемого с детства мяса, можно использовать нежирную молодую баранину и в лечебном питании.

Число потребляемых натуральных продуктов ограничено: в основном это свежие овощи, фрукты, ягоды, орехи, мед. Большинство продуктов употребляют после переработки: колбасные, кондитерские, хлебобулочные изделия, кисломолочные продукты, различные блюда и т. д. Целесообразно применение в лечебном питании комбинированных для лучшей сбалансированности пищевых веществ продуктов: новые виды круп, яичные и молочные макаронные изделия, сливочное масло и плавленный сыр с пастой «Океан» и др. Перспективно использование искусственных продуктов. Эти продукты получают на основе белков и других пищевых веществ природного происхождения, но их состав, структура, внешний вид и другие свойства образованы искусственным путем (искусственные крупо-макаронные изделия и мясопродукты, икра белковая зернистая и др.). В искусственных продуктах можно регулировать химический состав, что важно для создания специальных продуктов лечебного питания.

Многие пищевые продукты, в частности после соответствующей кулинарной обработки, обладают теми или иными лечебными (диетическими) свойствами применительно к отдельным заболеваниям. Однако это не дает основания называть их диетическими продуктами. Диетические продукты - специально разработанные продукты, предназначенные главным образом для больных людей. Эти продукты условно подразделяют на две группы. 1-я группа диетических продуктов используется при заболеваниях желудочно-кишечного тракта, нарушении акта жевания и глотания, в послеоперационном периоде. Эти продукты должны обеспечить механически и химически щадящее питание, поэтому они имеют высокую степень измельчения, в них мало клетчатки, экстрактивных веществ, натрия хлорида (поваренной соли), нет специй. К таким продуктам относятся мука тонкого помола из круп; гомогенизированные (особо протертые) консервы из освобожденных от несъедобной части овощей, фруктов, мяса, рыбы; энпиты - сухие растворимые в воде концентраты высокой питательной ценности и др. 2-я группа диетических продуктов предназначена для заболеваний, связанных с нарушением обмена веществ (атеросклероз, сахарный диабет, ожирение, недостаточность почек и др.). В этих продуктах ограничены некоторые пищевые вещества (жиры с насыщенными жирными кислотами, сахар, натрия хлорид, пурины и др.) и увеличено содержание витаминов, незаменимых жирных кислот, лецитина, минеральных солей и других нормализующих обменные процессы пищевых веществ. К таким диетическим продуктам относятся различные хлебобулочные изделия (булочки с лецитином и морской капустой, белково-пшеничный и бессолевой хлеб и др.); кондитерские изделия, фруктовые пюре, компоты, соки, варенье с ксилитом или сорбитом вместо сахара; безбелковые макаронные изделия; кисломолочные продукты и сливочное масло, обогащенные растительными маслами; колбасные изделия с белково-минеральным обогатителем и др. Особо следует выделить диетические продукты, предназначенные для больных с наследственными нарушениями обмена веществ. В таких продуктах исключены или резко ограничены непереносимые организмом пищевые вещества, например некоторые аминокислоты или лактоза.

Условность группировки диетических продуктов объясняется тем, что некоторые продукты используются при заболеваниях, включенных в обе группы: хлеб зерновой и докторский, кисломолочные продукты с включением растительных масел и др. Некоторые диетические продукты одновременно являются продуктами детского питания, например гомогенизированные консервы.

Качество продуктов - это совокупность свойств, обусловливающих пригодность данной продукции к удовлетворению определенных потребностей в соответствии с назначением ГОСТ.

Органолептические свойства продуктов - внешний вид, консистенция, цвет, запах, вкус - важные показатели их качества. Изменение органолептических качеств продукта указывает обычно и на ухудшение их биологической ценности (уменьшение содержания витаминов, незаменимых жирных кислот и др.) и возможное накопление вредных для организма, особенно больных людей, продуктов распада белка, разложения углеводов, окисления жиров. При плесневении продуктов возможно образование ядовитых веществ. Органолептическим изменениям скоропортящихся продуктов может сопутствовать размножение болезнетворных микробов.

При приеме продуктов в пищеблоки и диетические столовые, а также перед кулинарной обработкой хранившихся продуктов их качество проверяют по органолептическим показателям.

Классификация. С учетом общих характерных признаков и особенностей использования можно выделить следующие группы пищевых продуктов: 1) молоко и молочные продукты; 2) мясо и мясные продукты; 3) рыба, рыбные продукты и морепродукты; 4) яйца и яйцепродукты; 5) пищевые жиры; 6) крупы и макаронные изделия; 7) мука, хлеб и хлебобулочные изделия, отруби; 8) овощи, плоды (фрукты, ягоды, орехи) и грибы свежие и переработанные; 9) сахар и его заменители, мед, кондитерские изделия; 10) консервы и концентраты; 11) вкусовые продукты (чай. кофе, пряности, приправы, пищевые кислоты); 12) минеральные воды. Продукты всех групп делят на виды по происхождению или получению. Некоторые продукты делят на сорта и категории с учетом качества в соответствии с требованиями стандарта. Например: вид коровьего масла - сливочное несоленое, сорта высший и 1-й; говядина I и II категории - по упитанности; яйца свежие I и II категории - по массе и качеству.

Химический состав и энергоценность основных пищевых продуктов представлены в таблице "Химический состав и энергетическая ценность 100г съедобной части основных пищевых продуктов" , а данные о содержании в продуктах аминокислот (лизин, метионин, триптофан), линолевой кислоты, холестерина и клетчатки - соответственно в Таблицах , , и раздела "Основы питания здорового и больного человека".

Сорбционные свойства характеризуют способность пищевых продуктов поглощать из окружающей среды пары воды и летучие вещества. Эти свойства играют большую роль при перевозках и хранении пищевых продуктов.

Различают четыре типа сорбции: адсорбцию - поглощение веществ поверхностью продукта; абсорбцию - поглощение веществ всей массой продукта; хемосорбцию - химическое взаимодействие между веществом и продуктом; капиллярную конденсацию - образование жидкой фазы в микро- и макрокапиллярах твердых продуктов.

Процесс, обратный сорбции, - десорбция - определяет переход веществ из поверхностного слоя в окружающую среду.

Сорбция и десорбция паров и газов приводят к изменению качества продукта, который может усыхать из-за недостатка влаги в окружающей атмосфере, приобретать неприятный запах или терять аромат при нарушении условий хранения.

На практике наибольшее значение имеют сорбция и десорбция водяных паров.

Увлажнение пищевого продукта, т.е. сорбция им водяных паров, наблюдается тогда, когда парциальное давление пара у поверхности продукта меньше парциального давления пара в воздухе.

Процесс испарения (десорбция) происходит при большем давлении паров у поверхности продукта по сравнению с давлением пара в воздухе. Если давления паров в воздухе и в окружающей среде равны, то наступает состояние динамического равновесия. Влажность продукта, соответствующая состоянию равновесия, называется равновесной влаж­ностью. Она зависит главным образом от химического состава и состояния продукта, а также от относительной влажности и температуры воздуха.

Гигроскопичность - свойство продуктов поглощать влагу из окружающей среды и удерживать ее капиллярами и всей поверхностью. Гигроскопичность пищевых продуктов зависит от их структуры и состава, а также от температуры и влажности окружающей среды. Как правило, порошкообразные пищевые продукты (сухое молоко, кофе), чай, су­шеные фрукты и овощи отличаются высокой гигроскопичностью.

Значительно повышает гигроскопичность продукта содержание в нем веществ, способных активно поглощать пары воды из окружающей атмосферы. К таким веществам относятся фруктоза, обусловливающая гигроскопичность меда, соли кальция и магния, присутствующие в качестве примесей в поваренной соли и обусловливающие ее гигроскопичность.

Таким образом, пищевые продукты характеризуются комплексом простых и сложных свойств - химических, физических, технологических, физиологических и т.д. Совокупность этих свойств определяет их полезность для человека, т.е. потребительские свойства. Полезность продуктов питания характеризуют их пищевая, биологическая, физиологическая, энергетическая ценность, доброкачественность, органолептические свойства.

Пищевая ценность продукта - это наиболее широкое понятие, включающее содержание в продукте основных химических веществ: углеводов, жиров, белков в пищевом продукте, степень их усвоения и энергетическую ценность, их вкусовые достоинства. Пищевая ценность продукта тем выше, чем больше она удовлетворяет потребность организма в пищевых веществах и чем полнее соответствует принципам сбалансированного питания.

Биологическая ценность продукта отражает прежде всего качество белков в нем, аминокислотный состав и перевариваемость. В более широком смысле в это понятие включают содержание в пищевом продукте жизненно важных биологически активных веществ - микроэлементов, незаменимых жирных кислот, витаминов и др.

Физиологическая ценность продукта характеризуется наличием в нем полезных элементов, необходимых для осуществления процессов основного обмена веществ в организме. Она отражает также влияние потребляемых продуктов на нервную, сердечно-сосудистую, пищеварительную и другие системы организма, устойчивость к инфекционным заболеваниям. Например, кофеин в чае и кофе, теобромин в шоколаде, спирт в напитках возбуждающе действуют на нервную и сердечно-сосудистую систему. Иммунные тела в молоке, антимикробные вещества в яйце повышают сопротивляемость организма к инфекционным заболеваниям. Пищевые кислоты (молочная, яблочная) подавляют гнилостные процессы в кишечнике.

Энергетическая ценность продукта - это энергия, которая высвобождается из пищевых веществ продуктов в процессе биологического окисления и используется для обеспечения физиологических функций организма.

Доброкачественными считаются такие пищевые продукты, которые не содержат вредных для организма человека веществ (соли тяжелых металлов, ядовитые органические соединения, ядовитые алкалоиды, гликозиды, токсины – яды, выделяемые некоторыми плесневыми грибами), а также не имеют несвойственных им привкусов и запахов. В пищевых продуктах не допускаются патогенные микроорганизмы, плесневые грибы, вредители. Строго регламентируется содержание меди, олова, никеля, металлопримесей, не допускаются соли свинца, ртути, мышьяка.

Органолептические свойства продуктов характеризуются показателями, определяемыми органами чувств: внешний вид, консистенция, вкус и запах. Они тесно связаны с усвояемостью продукта. Наиболее важным показателем является вкус. Как правило, высокими вкусовыми достоинствами отличаются продукты, универсальные по химическому составу и содержащие ценные пищевые кислоты и ароматические вещества.

Усвояемость пищевого продукта – степень усвоения пищевого продукта в процентах.

На усвояемость переваренной пищи влияют; химический состав, ее кулинарная обработка, внешний вид, объем, режим питания, условия приема пищи, состояние пищеварительного аппарата и др.

Усвояемость пищи животного происхождения в среднем составляет 90%, растительного – 65%, смешанной – 85%. Наилучшим образом перевариваются углеводы, усвояемость их достигает 98-99%. Переваривание белков осуществляется сложнее. Белок из продуктов животного происхождения усваивается в кишечнике на 90% и более, а из растительных - на 60-80%. Снижение усвояемости белков растительного происхождения связано с тем, что оболочки растительных клеток содержат значительное количество клетчатки, не поддающейся действию ферментов пищеварительных соков.

Жир усваивается с различной интенсивностью. Жиры с более низкой точкой плавления усваиваются быстрее, твердые жиры с высокой точкой плавления - значительно хуже. Сливочное масло усваивается на 98%.

Для более полного усвоения пищевых веществ в организме большое значение имеет правильное соотношение их в пищевом рационе. Недостаток какого-либо пищевого вещества, например белка, снижает усвояемость других пищевых веществ, а избыток жира также оказывает отрицательное влияние на весь процесс усвоения.

Кулинарная обработка пищи способствует пищеварению, а, следовательно, и ее усвоению. Пища протертая, отварная усваивается лучше пищи кусковой и сырой. Внешний вид, вкус, запах пищи усиливают выделение пищеварительных соков, способствуя ее усвояемости. Режим питания и правильное распределение суточного объема пищи в течение дня, условия приема пищи (интерьер столовой, вежливое, доброжелательное обслуживание, чистота посуды, опрятный внешний вид поваров), настроение человека также повышают ее усвояемость.

Сохраняемость - способность товара сохранять потребительские свойства при хранении и транспортировании в течение установленных сроков, а также после них. Показателями сохраняемости являются – срок календарной продолжительности хранения, потери, выход стандартной продукции;

Готовность к употреблению - степень обработки, удобство в приготовлении;

Безопасность - отсутствие в пищевых продуктах вредных для организма человека веществ (соли тяжелых металлов, токсины, яды), несвойственных привкусов и запахов.

Физические свойства пищевых продуктов в значительной мере определяют их качество, способность к длительному хранению и транспортированию.

К физическим свойствам продуктов относят массу, форму, размер, плотность, структурно-механические, оптические, тепло-физические, сорбционные, электрофизические и другие свойства.

Масса, форма, размер являются показателями качества многих пищевых продуктов. Нормируются эти показатели для хлебобулочных и кондитерских изделий, сыров, творожных сырков и др. У плодов и овощей каждому помологическому или хозяйственно-ботаническому сорту соответствуют определенные форма и размер. Последний нормируется для сыров, колбасных изделий, макарон и др.

Плотность - это масса вещества, находящегося в единице объема. По этому показателю можно судить о количестве сахарозы в сахаре, соли - в рассоле, о виде растительных масел. По плотности продукта можно установить его состав и строение.

К структурно-механическим свойствам относят прочность, твердость, упругость, эластичность, пластичность, релаксацию, вязкость, липкость пищевых продуктов.

Прочность - способность продукта сопротивляться механическому разрушению. Этот показатель используют при определении качества макарон, сахара-рафинада, сухарей и других продуктов.

Твердость - свойство материала препятствовать проникновению в него другого более твердого тела. Твердость определяют при оценке качества зерна, плодов, овощей и сахара.

Упругость - способность тел восстанавливать форму сразу после приложения внешней силы.

Эластичность - способность тел через определенное время восстанавливать свою форму после надавливания. Этот показатель имеет значение при перевозке и хранении хлебобулочных изделий, плодов и овощей, а также при определении качества клейковины муки, мякиша хлеба, свежести мяса и рыбы.

Пластичность - способность продукта необратимо деформироваться под действием внешних сил. Этот показатель характеризует качество теста, карамельной массы, мармелада и др.

Релаксация - свойство продуктов, характеризующее время перехода упругих деформаций в пластические. Это свойство учитывается при перевозке хлебобулочных изделий, кондитерских товаров, плодов и овощей.

Вязкость - способность жидких тел оказывать сопротивление перемещению одной ее части относительно другой. Этот показатель характерен для таких продуктов, как растительное масло, соки, сиропы, мед и др.

Липкость - способность продуктов проявлять силы взаимодействия с другим продуктом или тарой. Этот показатель характеризует сливочное масло, мясной фарш, сыр, вареные колбасы, хлебный мякиш, ирис и др.

Для характеристики структурно-механических свойств товаров применяют термин «консистенция».


К оптическим свойствам относят прозрачность, цветность, рефракцию, оптическую активность. Эти показатели воспринимаются человеком посредством зрительных ощущений. Оптические свойства - важный показатель качества большинства продуктов питания.

Теплофизические свойства обусловливают характер и скорость протекания в продукте процесса нагревания или охлаждения. К этим свойствам относят теплоемкость, теплопроводность, температуру плавления, затвердевания, замерзания. Теплофизические характеристики учитываются при варке, выпечке, пастеризации, стерилизации, замораживании, размораживании, перевозке и хранении продуктов.

Сорбционные свойства - способность вещества поглощать пары воды или газы из окружающей среды. Процесс, обратный сорбции, называется десорбцией. Эти процессы могут приводить к изменению качества продукта.

Поглощать влагу могут продукты, содержащие мало влаги,- чай, кофе, соль, сахар, сухофрукты, сухое молоко и др.; продукты, богатые жиром или содержащие очень много влаги, ее не поглощают.

Поглощение продуктом паров или газов с образованием химических соединений называют хемосорбцией.

Электрофизические свойства определяют поведение продуктов в электромагнитном поле. Основным показателем этих свойств является электропроводность. На этом показателе основано определение влажности и титруемой кислотности некоторых продуктов.

ЛЕКЦИЯ 1.

ОСНОВНЫЕ СВОЙСТВА ПИЩЕВЫХ ПРОДУКТОВ И СЫРЬЯ.

КЛАССИФИКАЦИЯ ОСНОВНЫХ ПРОЦЕССОВ

ПИЩЕВОЙ ТЕХНОЛОГИИ.

ПРИНЦИПЫ АНАЛИЗА И РАСЧЕТА ПРОЦЕССОВ И АППАРАТОВ

1.1. ОСНОВНЫЕ СВОЙСТВА ПИЩЕВЫХ ПРОДУКТОВ И СЫРЬЯ

Гидромеханические процессы - это процессы, скорость которых определяется законами механики и гидродинамики. К ним относятся процессы перемещения жидкостей и газов по трубопроводам и аппаратам, перемешивания в жидких средах, разделения суспензий и эмульсий путем отстаивания, фильтрования, центрифугирования, псевдоожижения зернистого материала.

Теплообменные процессы - это процессы, связанные с переносом теплоты от более нагретых тел (или сред) к менее нагретым. К ним относятся процессы нагревания, пастеризации, стерилизации, охлаждения, конденсации, выпаривания и т. п. Скорость тепловых процессов определяется законами теплопередачи.

Чугуны представляют собой многокомпонентные сплавы железа с углеродом, а также с кремнием, марганцем, фосфором. Чугуны применяют для изготовления как отдельных деталей машин, так и целых аппаратов: цилиндров насосов и компрессоров, зубчатых и червячных колес, труб и трубопроводной арматуры.

Основным методом изготовления деталей из чугунов является литье.

Чугуны хорошо сопротивляются сжатию, плохо - изгибу и растяжению, а также скалыванию.

Цветные металлы, в основном алюминий и медь, широко применяют в пищевом машиностроении.

Алюминий обладает достаточной прочностью, низкой плотностью, хорошей теплопроводностью, легко штампуется и прокатывается. Для изготовления аппаратуры используют марки АОО и АО с содержанием алюминия соответственно не менее 99,7 и 99,6%.

Медь является ценным конструкционным материалом. Для изготовления пищевой аппаратуры применяют марки М2 и М3.

Медь подобно алюминию хорошо тянется, штампуется, вальцуется как в горячем, так и в холодном состоянии. Для изготовления аппаратуры - теплообменных аппаратов, ректификационных колонн и др. - применяют отожженную медь. Из сплавов на основе меди используют бронзы и латуни.

Неметаллические материалы неорганического и органического происхождения используют в пищевой промышленности достаточно широко. Из материалов неорганического происхождения для изготовления самых различных аппаратов (перегонных и выпарных аппаратов, теплообменников, ферментаторов, ректификационных колонн, трубопроводов и т. д.) используют стекло. Применение стекла повышает санитарно-гигиенические условия производства продуктов питания.

Из материалов органического происхождения применяют конструкционные пластические массы: полиэтилен, поликарбонат, полисульфон, полиамиды, фторопласт-4, полистирол и др. Полиэтилен используют для изготовления емкостей для пищевого сырья, футеровки и заполнения аппаратов и других целей. Например, в непрерывном процессе получения шампанских вин для увеличения площади поверхности контакта фаз в реакторах применяют цилиндрические полиэтиленовые насадки.

Из поликарбоната и полиамидов изготовляют некоторые узлы оборудования, посуду и др. Фторопласт-4 применяют для изготовления прокладок и других уплотняющих деталей, футеровки аппаратов. Из полисульфона и поликарбоната изготовляют пленки для мембранных аппаратов. Полистирол применяют для упаковки и изготовления посуды.

Химическая стойкость материалов. Конструкционный материал для изготовления аппаратов, работающих в агрессивных средах, должен обладать высокой химической стойкостью. Преждевременный выход машин и их деталей из строя часто является следствием неправильного выбора материала для их изготовления.

Продукты коррозии являются причиной снижения качества продукта, загрязняя его. Они могут испортить цвет, ухудшить вкус, придать запах продукту. Кроме того, материал аппарата может служить катализатором, интенсифицирующим течение побочных процессов. Контакт обрабатываемых веществ с коррозиенестойким материалом может в некоторых случаях препятствовать проведению процессов, например биохимических.

Оценка материала по коррозиестойкости проводится по специальной шкале (табл. 1.3.1).

Таблица 1.3.1. Шкала коррозиестойкости металлов

Группа стойкости

коррозиестойкости

Скорость коррозии,

Совершенно стойкие

Весьма стойкие

Пониженно-стойкие

Малостойкие

Нестойкие

Для оценки интенсивности процесса коррозии применяют глубинный или массовый показатель. Глубинный показатель при равномерной коррозии измеряется уменьшением толщины металла (в мм) в год. Для изготовления аппаратуры используют материалы, скорость коррозии которых не превышает 0,1...0,5 мм в год.

Для защиты металлов от коррозии их покрывают металлическими и неметаллическими пленками, облицовывают. Из металлов для этих целей используют хром, никель, алюминий и др., из неметаллов - эмали, полимерные материалы и различные лаки.

Технико-экономический выбор коррозиестойких материалов. При выборе материалов должны учитываться следующие факторы: первоначальная стоимость основного технологического оборудования; затраты, обусловленные коррозией или устранением ее последствий в процессе технического обслуживания оборудования в рассматриваемом коррозиестойком исполнении; затраты, обусловленные коррозией или устранением ее последствий при текущих и капитальных ремонтах оборудования; убытки от простоев во время межремонтного срока службы оборудования, обусловленные коррозией или устранением ее последствий. Вариант с минимальными затратами является наиболее рациональным для каждой позиции разрабатываемой технологической схемы.

1.3.5. ОПРЕДЕЛЕНИЕ ОСНОВНЫХ РАЗМЕРОВ АППАРАТОВ

Основные типы процессов и аппаратов. Машины и аппараты по принципу организации процесса бывают периодического, непрерывного и смешанного действия.

В периодическом процессе отдельные его стадии (например, загрузка теста в смеситель , нагрев, смешение и выгрузка) осуществляются в одном аппарате (машине), но в определенной последовательности.

В непрерывном процессе отдельные его стадии осуществляются одновременно, но в разных местах одной машины или аппарата или в разных машинах и аппаратах.

В смешанных процессах отдельные стадии осуществляются периодически в машинах и аппаратах периодического действия, а другие стадии - в машинах и аппаратах непрерывного действия.

В зависимости от изменения параметров процесса (температур, давлений, скоростей, концентраций и т. д.) во времени они делятся на установившиеся (стационарные) и неустановившиеся (нестационарные).

В установившихся процессах значения параметров постоянны во времени (непрерывные процессы), а в неустановившихся - изменяются во времени, т. е. являются функциями положения в пространстве и во времени (периодические процессы).

Непрерывные процессы отличаются от периодических по распределению времени пребывания частиц среды в аппарате и связанных с ним изменений других факторов (температур, концентраций), влияющих на процесс. В периодически действующем аппарате все частицы находятся одинаковое время, в непрерывнодействующем - различное время.

Для характеристики периодических и непрерывных процессов используют следующие понятия:

продолжительность процесса τ - время, необходимое для завершения всех его стадий от загрузки исходного сырья до выгрузки готового продукта;

период процесса ∆τ - время от начала загрузки исходного сырья данной партии до начала загрузки исходного сырья следующей партии;

степень непрерывности τ/∆τ - частное от деления продолжительности процесса на его период.

Периодический процесс характеризуется периодом ∆τ> 0, степенью его непрерывности τ / ∆τ <1 и единством места осуществления отдельных стадий процесса.

Непрерывный процесс характеризуется периодом ∆τ→0, степенью его непрерывности τ / ∆τ → ∞ и единством места проведения отдельных стадий.

Непрерывные процессы в настоящее время широко внедряются в промышленность благодаря значительным преимуществам перед периодическими. Такие преимущества заключаются в возможности специализации и типизации аппаратуры для каждой стадии процесса, в стабилизации процесса во времени, стабилизации и повышении качества продукта, во внедрении автоматических систем управления технологическим процессом (АСУ ТП).

По распределению концентраций (температур) в рабочем объеме аппараты бывают идеального смешения, идеального вытеснения и промежуточного типа.

В аппаратах идеального смешения концентрация (температура) во всем объеме одинакова и равна концентрации (температуре) на выходе из аппарата.

В аппарате идеального вытеснения концентрация (температура) меняется плавно от начальной до конечной.

В реальных аппаратах поле концентраций (температур), как правило, отличается от схем идеального перемешивания и идеального вытеснения. Они относятся к аппаратам промежуточного типа.

В аппаратах промежуточного типа распределение, или поле, концентраций (температур) в рабочем объеме можно характеризовать числом псевдосекций идеального смешения или коэффициентами диффузии.

Степень приближения поля концентраций (температур) к полям в аппаратах идеального смешения или вытеснения устанавливают экспериментально на основании кривых отклика на вводимое в поток возмущение. Так, при количестве псевдосекций N=1 имеем аппарат идеального смешения, при N →∞ - аппарат идеального вытеснения. При промежуточном значении числа псевдосекций N аппарат относится к аппаратам промежуточного типа.

Распределение концентраций (температур) в аппарате необходимо знать для вычисления средней движущей силы процесса и времени пребывания.

Рассмотрим характер изменения температур в аппаратах непрерывного действия идеального смешения, идеального вытеснения и промежуточного типа.

В аппарате идеального смешения (рис. 1.3.1, а) жидкость идеально перемешана. Температура поступающей в аппарат жидкости tH мгновенно принимает значение температуры жидкости в аппарате tK , которая равняется конечной температуре жидкости на выходе из аппарата.

Рис. 1.3.1. Характер изменения температуры при нагревании жидкости в аппаратах:

где: а - идеального смешения; б - идеального вытеснения; в - промежуточного типа: ts - предельная температура в процессе (например, температура греющего пара)

В аппарате идеального вытеснения (рис. 1.3.1, б) поступающие в аппарат объемы жидкости не смешиваются с предыдущими, полностью вытесняя их. В результате этого температура жидкости плавно меняется по длине или высоте аппарата от tH до tK .

В аппаратах промежуточного типа (рис. 1.3.1, в ) отсутствует идеальное смешение жидкости, но нет и идеального вытеснения. Вследствие этого температура жидкости изменяется первоначально скачкообразно от tH до t " H , как в аппарате идеального смешения, а затем плавно изменяется от t н" до t к, как в аппарате идеального вытеснения.

Движущей силой процесса является разность между предельной температурой и рабочей. На рис. 1.3.1 показано изменение движущей силы (разности температур), пропорциональное величинам заштрихованных площадей. Максимальные величины движущей силы соответствуют аппаратам идеального вытеснения, минимальные - аппаратам идеального смешения, промежуточные - аппаратам промежуточного типа.

Если рабочий объем аппарата идеального смешения Vp разделить на N последовательно соединенных секций объемом каждая Vр/N, то движущую силу можно значительно увеличить, причем чем больше N , тем больше будет и движущая сила. Практически при N=8...16 движущая сила такого аппарата промежуточного типа будет приближаться к движущей силе в аппарате идеального вытеснения.

Расчет аппаратов (машин) периодического действия. При расчете аппаратов (машин) периодического действия задаются производительностью в единицу времени (в час, сутки и т. д.) и периодом процесса ∆τ.

Число партий продукта в сутки, которое производится одним аппаратом или машиной, b =24/∆τ.

Число партий, которое должно быть выпущено в сутки для достижения заданной производительности Vτ, a=V τ /V где Vр - рабочий объем аппарата.

Требуемое число аппаратов или машин n=a/b=Vτ ∆τ/(24Vр).

Если заданная производительность обеспечивается работой одного аппарата или машины (n=1), то его рабочий объем https://pandia.ru/text/78/416/images/image005_120.gif" width="133" height="25 src=">, (1.3.4)

где М - масса получаемого продукта; Vр - рабочий объем аппарата; - продолжительность процесса; - объемный коэффициент скорости процесса; - средняя движущая сила процесса.

В общем случае https://pandia.ru/text/78/416/images/image009_87.gif" width="139" height="53 src=">.

Если объем сырья перерабатываемого в единицу времени, составляет , то средняя производительность аппарата в единицу времени (в кг/с, кг/ч)

https://pandia.ru/text/78/416/images/image012_67.gif" width="112" height="47 src=">.

Между производительностью аппарата и его рабочим объемом существует определенная связь.

Из уравнения расхода =fv, где f - площадь поперечного сечения аппарата; v - линейная скорость. Умножим и разделим правую часть этого уравнения на длину аппарата L , тогда =fL v/L = /, или

https://pandia.ru/text/78/416/images/image006_103.gif" width="13 height=15" height="15"> определим из сопоставления уравнений (1.3.4) и (1.3.5):

Промышленное оборудование" href="/text/category/promishlennoe_oborudovanie/" rel="bookmark">промышленного оборудования в расчетные уравнения вводить соответствующие коэффициенты, учитывающие изменение масштаба процесса и аппарата. Такие коэффициенты получают на основании физического и математического моделирования процессов и аппаратов.

1.3.6. МОДЕЛИРОВАНИЕ И ПОДОБИЕ ПРОЦЕССОВ ПИЩЕВОЙ ТЕХНОЛОГИИ

Виды моделирования. Процессы пищевой технологии характеризуются большим количеством и многообразием параметров, определяющих протекание процессов, значительным количеством внутренних связей между параметрами. Чтобы ограничить такой большой поток информации о процессе, создают его модель, которая отражает отдельные явления изучаемого процесса.

Процесс моделирования включает сравнение модели с явлением (модель считается удовлетворительной, если расхождение невелико) и сравнение нашего ожидания с показаниями модели.

Применяют два вида моделирования: физическое и математическое. При физическом моделировании изучение данного процесса происходит на физической модели. Математическое моделирование предусматривает математическое описание модели изучаемого процесса. При этом физический процесс заменяют алгоритмом, моделирующим его. Затем устанавливают адекватность модели изучаемому процессу.

Методы математического моделирования в сочетании с ЭВМ позволяют при относительно небольших материальных затратах изучать различные варианты аппаратурно-технологического оформления процесса, находить оптимальные.

При математическом моделировании используют также свойство изоморфности дифференциальных уравнений, которое является отражением единства законов природы и позволяет с помощью однотипных дифференциальных уравнений описать различные по своей физической природе явления. Существует аналогия между процессами, различными по своей сущности: электрическими, гидродинамическими, тепловыми и массообменными. Эти процессы описываются однотипными дифференциальными уравнениями: перенос электричества (закон Однотипные дифференциальные уравнения:

перенос электричества (закон Ома) –

i = - (1/R )(dU / dx );

перенос количества энергии (закон трения Ньютона) –

https://pandia.ru/text/78/416/images/image017_56.gif" width="64" height="21">,

где: dU / dx , dv / dx , dc / dx , dt / dx – градиенты соответственно напряжения, скорости, концентрации и температуры; здесь i – сила тока; https://pandia.ru/text/78/416/images/image018_38.jpg" width="226" height="154 src=">

Рис. 1.3.2. Геометрически подобные аппараты

Временное подобие заключается в том, что отношение между интервалами времени завершения аналогичных стадий процесса сохраняется постоянным.

Например, продолжительность нагрева смеси до температуры кипения в первом аппарате составляет , а во втором - τ"1 Продолжительность испарения определенного количества воды составляет соответственно τ"2 и τ"2. Тогда временное подобие процессов будет характеризоваться соотношением

https://pandia.ru/text/78/416/images/image021_50.gif" width="75" height="24 src=">.gif" width="21" height="24 src=">- масштабный коэффициент временного подобия.

Временное подобие процессов называется гомохронностью. В случае, когда Кτ=1, имеет место синхронность процессов, являющаяся частным случаем гомохронности.

Подобие физических величин имеет место при соблюдении геометрического и временного подобия. В этом случае говорят также о подобии полей физических величин.

Полем физической величины называют совокупность мгновенных локальных значений этой величины во всем рабочем объеме, в котором протекает процесс.

Подобие граничных условий заключается в том, что отношение всех значений величин, характеризующих эти условия, для сходственных точек в сходственные моменты времени сохраняется постоянным.

Подобие начальных условий означает, что в начальный момент, когда начинается изучение процесса, соблюдается подобие полей физических величин, характеризующих процесс.

Если все индивидуальные признаки различных процессов, входящих в один класс, подобны, то процессы также подобны, т. е. подобные процессы представляют собой один процесс, протекающий в различных масштабах, так как подобные процессы описываются одинаковыми дифференциальными уравнениями, а индивидуальные признаки процессов (условие однозначности) различаются масштабом.

Определим условия подобия на примере дифференциального уравнения второго закона механики F = m (dv / ), где F -сила; т - масса; v - скорость; τ - время. Приведем уравнение к безразмерному виду. Для этого разделим обе части уравнения на правую часть: Fdτ/(mdv)=1. Тогда для первого из двух рассматриваемых подобных процессов F"dτ"/(m"dv")=l; для второго - F""dτ""/(m""dv"")=l.

Так как процессы подобны, заменим переменные первого процесса через соответствующие переменные второго процесса, умножим их на масштабные коэффициенты:

https://pandia.ru/text/78/416/images/image027_36.gif" width="112" height="45 src=">.

Полученное уравнение и уравнение второго процесса не должны различаться. Однако они различаются комплексом из произведения масштабных коэффициентов. Эти уравнения, очевидно, будут тождественны только тогда, когда этот комплекс будет равен единице:

KFK τ/(KmKv)=1. Это соотношение выражает условие подобия процессов: умножение переменных на постоянные масштабные коэффициенты не меняет самого дифференциального уравнения.

Заменим масштабные коэффициенты соответствующими значениями. Тогда

https://pandia.ru/text/78/416/images/image029_32.gif" width="221" height="41 src=">

Выражение idem означает «одно и то же», т. е. в каждом подобном процессе комплексы переменных величин могут изменяться в пространстве и во времени, но в любых сходственных точках рабочего объема в сходственные моменты времени эти комплексы принимают одно и то же значение. Безразмерные комплексы, составленные по такому типу, называются критериями подобия или числами подобия.

Критерии подобия носят названия по фамилиям выдающихся ученых, известных своими работами в соответствующей области наук. Полученный выше критерий характеризует механическое подобие и называется критерием Ньютона: Ne =Fτ/(mv ).

Получение критериев подобия из дифференциального уравнения сводится к следующим операциям: 1) составляется дифференциальное уравнение процесса; 2) дифференциальное уравнение приводится к безразмерному виду делением обеих частей уравнения на правую или левую часть или делением всех слагаемых на один из членов с учетом его физического смысла; 3) вычеркиваются символы дифференцирования. Символы степеней дифференциалов сохраняются.

При проведении процесса физические величины в различных точках рабочего объема могут иметь различные значения. В этом случае в критериях подобия фигурируют усредненные значения, и тогда пользуются усредненными критериями (числами) подобия.

Кроме критериев подобия, получаемых из дифференциальных уравнений, используются также параметрические критерии, представляющие собой отношение двух одноименных величин и вытекающие непосредственно из условии задачи исследования.

Например, при изучении движения жидкости в канале процесс будет зависеть от соотношения длины трубы и диаметра l / d =Г1 (где Г - геометрический критерий подобия), относительной шероховатости и диаметра трубы Δ/ d =Г2. Линейный размер, входящий в эти критерии подобия, называется определяющим размером.

Все критерии подобия можно разделить на определяющие и определяемые. Определяющие критерии состоят только из физических величин, входящих в условия однозначности. Критерии подобия, в состав которых входит хотя бы одна величина, не входящая в условия однозначности, называются определяемыми.

Для обеспечения подобия необходимо равенство определяющих критериев. Равенство определяющих критериев является достаточным условием подобия.

Не определяющие критерии являются однозначной функцией определяющих критериев.

Первую теорему подобия можно формулировать так: при подобии процессов равны все критерии подобия.

Вторая теорема подобия (теорема Федермана -Бэкингема) утверждает, что результаты опытов следует представлять в виде зависимостей между критериями. Функциональная зависимость между критериями подобия называется критериальным уравнением. Критериальные уравнения описывают всю группу подобных процессов. Это обстоятельство имеет большое практическое, значение и позволяет моделировать промышленный объект на подобной лабораторной модели.

Вид критериального уравнения определяется экспериментальным путем. Во многих случаях эта зависимость представляется в виде степенных функций.

Третья теорема подобия (теорема, мана) гласит, что критериальные уравнения применимы только для подобных процессов.

Явления подобны, если их определяющие критерии численно равны, а следовательно, равны и определяемые критерии.

В заключение можно констатировать, что исследование процессов методом теории подобия состоит из получения математического описания процесса с помощью дифференциальных уравнений и условий однозначности, преобразования этих дифференциальных уравнений (или дифференциального уравнения), как показано выше, в критериальное уравнение и нахождения конкретного вида этого уравнения на основании экспериментального изучения процесса.

1.3.7. РАСЧЕТ ТЕПЛОМАССООБМЕННЫХ АППАРАТОВ С УЧЕТОМ

ФАКТОРА МАСШТАБНОГО ПЕРЕХОДА

При масштабном переходе к промышленным аппаратам увеличение диаметров контактных устройств, с одной стороны, приводит к увеличению длины пути потока, что повышает эффективность массообмена. Однако при этом ухудшается распределение потока по поперечному сечению - изменяется гидродинамика аппарата. Возникает поперечная неравномерность потоков, приводящая к снижению эффективности массопередачи в аппарате.

Снижение эффективности тепломассообменных промышленных аппаратов по сравнению с подобной лабораторной моделью является следствием изменения гидродинамики потоков при прочих равных условиях, приводящего к снижению средней движущей силы процесса.

Движущую силу в промышленном аппарате можно определить по формуле

где: пр, м- движущая сила соответственно в промышленном и модельном аппаратах; Ф N - фактор масштабного перехода.

Движущую силу в реальном аппарате промежуточного типа выразим через движущую силу в аппарате идеального вытеснения или смещения:

https://pandia.ru/text/78/416/images/image033_30.gif" width="25" height="25"> - движущая сила в аппарате идеального вытеснения или смешения.

Подставив значения движущих сил в уравнение тепломассообмена (1.3.1) для модельного и промышленного контактных устройств, получим фактор масштабного перехода, который характеризует влияние гидродинамической обстановки при масштабном переходе на движущую силу процесса:

ФN=Е пр/Е м

где: Епр, Ем - коэффициенты использования движущей силы соответственно в промышленном и модельном аппаратах.

Тогда площадь поверхности (объем) аппарата

Если распределение концентраций (температур) в модели такое же, как в аппарате идеального вытеснения или смешения, т. е. м = и, то Ем = 1 и ФN = Епр. Эффективность модели и промышленного аппарата будет одинаковой, если ФN = 1.

Одним из путей увеличения эффективности аппаратов при масштабном переходе является организация процесса в режиме идеального вытеснения. В этом случае ФN → 1.

Для характеристики полей концентраций (температур) в аппаратах используются гидродинамические модели перемешивания: псевдосекционная, диффузионная, циркуляционная и построенные на их основе комбинированные модели перемешивания и структуры потоков, которые дают возможность провести аналитические исследования и описать (формализовать) процесс.

Одним из требований, предъявляемых к модели, является то, что модель наиболее полно должна отражать характер потоков вещества и энергии при достаточно простом математическом описании.

Математическая модель включает гидродинамические характеристики структуры потоков и описание кинетики рассматриваемого процесса.

Псевдосекционная (ячеечная) модель перемешивания построена из допущений о подобии перемешивания частиц в канале и в каскаде из N последовательно соединенных секций полного перемешивания и описывается системой линейных дифференциальных уравнений первого порядка вида

https://pandia.ru/text/78/416/images/image036_25.gif" width="236" height="48 src=">, (1.3.9)

где: х и - текущие концентрация и время; х н – начальная концентрация; Вымывание" href="/text/category/vimivanie/" rel="bookmark">вымывания введенного в канал индикатора.

На рис. 1.3.3 приведены кривые, построенные по уравнению (1.3.9) при N = 1...5, 7, 10, 20.

Диффузионная модель перемешивания описывает распределение вещества в потоке за счет молекулярной и турбулентной диффузии дифференциальным уравнением одномерной конвективной диффузии, в которое вводится эффективный коэффициент обратного перемешивания:

https://pandia.ru/text/78/416/images/image039_24.gif" width="13" height="15">(dx / dz ).

При идеальном перемешивании концентрация х в любой точке постоянна и дифференциальное уравнение приобретает вид х=xнехр(-τ/τв).

https://pandia.ru/text/78/416/images/image039_24.gif" width="13" height="15 src=">l/Dэ

где: v - скорость потока; l - линейный размер.

Установление связи между этими параметрами имеет важное практическое значение, так как позволяет использовать данные по перемешиванию, полученные на основании диффузионной модели, в математических описаниях массообмена, в основу которых положена псевдосекционная модель перемешивания.

Псевдосекционная модель совпадает с диффузионной с точностью до членов, содержащих производные старше второго порядка.

Связь между критерием Боденштейна В и N определяется из равенства статистических параметров дифференциальных функций распределения xN и хв.

Контрольные вопросы и задания

1. Какому общему закону подчиняются про­цессы пищевой технологии? Как записывается этот закон? 2. В чем заключаются задачи расчета машин и аппаратов пищевых производств? 3. Какие требования предъявляют к машинам и аппаратам? 4. Перечислите конструкционные материа­лы, применяемые в пищевом машиностроении. 5. Какие факторы учитывают при технико-экономическом выборе материалов для пищевого оборудования? 6. Ка­кими показателями характеризуются периодический и непрерывный процессы? 7. Как рассчитывают объем аппарата непрерывного действия? 8. Что такое мате­матическое и физическое моделирование? 9. В каком случае используется теория подобия для моделирования процессов? 10. Как получают критерии подобия? Ка­кие бывают критерии подобия? 11. Что учитывается фактором масштабного пере­хода при расчете тепломассообменных процессов? 12. Какие гидродинамические модели перемешивания используются для описания полей температур или кон­центраций в тепломассообменных аппаратах?

Физические свойства

Форма для плодов и овощей – показатель сорта и ботанического вида; для кондитерских, хлебобулочных изделий, сычужных сыров форма характеризует и правильность проведения технологических процессов и качество сырья.
Масса единицы продукции (абсолютная масса) определяется при оценке качества многих пищевых продуктов. Для хлебопекарных и кондитерских изделий массу ограничивают требованиями стандартов; для семян злаков и сырого кофе определяют массу 1000 зерен, для орехов массу 100 штук.
Плотность - масса единицы объема, выраженная в кг/м 53 0 или г/см 53 0. Для жидких продуктов определяют относительную плотность, которую находят делением массы продукта при температуре 20 градусов на массу воды при той же температуре. Плотность характеризует химический состав продукта и степень его разбавления.
Натура (объемная или насыпная масса) продукта определяется как отношение его массы к занимаемому им объему вместе с порами и пустотами, выражается в кг/м 53 0. Объемную массу необходимо учитывать при определении вместимости тары, складских помещений, транспортных средств.

Структурно-механические свойства
Характеризуют сопротивляемость пищевых продуктов механическому воздействию, зависят от химического состава и строения продуктов.
Прочность - способность продукта сопротивляться механическому разрушению; определяется для установления качества сахара-рафинада, сухарей, макаронных изделий.
Твердость - свойство тела препятствовать проникновению в него другого (более твердого тела); определяется для зерна, сахара, овощей, плодов.
Упругость - способность тела мгновенно восстанавливать форму после приложения внешней силы (надавливания).
Эластичность - способность тела восстанавливать форму через некоторое время после надавливания.
Пластичность - способность продукта к необратимым деформациям (характеризует качество карамельной массы, теста).
Релаксация - свойство продуктов твердо-жидкой структуры, характеризующее время перехода упругих деформаций в пластические при постоянной нагрузке. Это свойство имеет большое значение при перевозке хлеба и хлебобулочных изделий, плодов, овощей, кондитерских товаров.
Ползучесть - свойство постепенного нарастания пластической деформации без увеличения нагрузки, особенно нагретого тела; характерно для повидла, мармелада, мороженого, сливочного масла, маргарина.
Вязкость - характеризует внутреннее трение, образующееся при относительном движении соседних слоев сиропов, патоки, меда, майонеза. Она зависит от сил сцепления между частицами и молекулами вещества, температуры продукта.
Липкость (адгезия) - способность продуктов проявлять в различной мере силы взаимодействия с другим продуктом или поверхностью тары, оборудования. Свойствами липкости обладают тесто, ирис, сыр, вареная колбаса, сливочное масло, хлебный мякиш, которые при разрезании прилипают к поверхности ножа, крошатся или ломаются.
Для характеристики структурно-механических свойств пищевых продуктов применяют термин "консистенция" - свойства продукта, обнаруженные при осязании или разжевывании.

Оптические свойства
Оптические свойства продуктов определяются визуально или при помощи приборов.
Прозрачность - способность продуктов пропускать свет (растворы сахара, рафинированные растительные масла, пиво).
Цвет - обусловлен естественными красящими веществами (пигментами) или добавлением искусственных красителей. Должен соответствовать виду и сорту продукта, может изменяться в процессе хранения и переработки.
Коэффициент преломления - способность продуктов и их растворов преломлять свет, характеризует качество и концентрацию продукта (сахарных растворов, растительных масел).
Оптическая активность - способность вращать плоскость поляризации поляризованного луча света.

Теплофизические свойства

Эти свойства проявляются при действии на пищевые продукты тепловой энергии. Знание теплофизических характеристик необходимо для обеспечения правильности протекания процессов варки, выпечки, стерилизации, пастеризации, замораживания, размораживания и хранения продуктов.
Теплоемкость - количество тепла, поглощенное телом при нагревании на 1 градус. Теплоемкость, рассчитанная на 1 кг продукта, называется удельной и выражается в Дж/(кг 5 о 0С). Низкой теплоемкостью отличаются продукты с большой массовой долей жира, высокой - продукты, имеющие большую влажность.
Коэффициент теплопроводности -количество тепловой энергии, которая протекает за единицу времени через 1 м 52 0 поверхности продукта на толщину 1 м при разнице температур 1 градус. Вода и продукты с большим влагосодержанием отличаются высокой теплопроводностью, способны быстро нагреваться и охлаждаться; жиросодержащие, пористые и сыпучие продукты обладают низкой теплопроводностью, что может вызвать их порчу.
Температура плавления жиров несколько выше температуры застывания. Эти характеристики зависят от состава и качества жиров.
Температура застывания должна учитываться при охлаждении, замораживании и хранении продуктов. Хранение при температуре ниже точки замерзания продуктов отрицательно сказывается на их качестве (для молока, напитков).

Сорбционные свойства
Сорбция - процесс поглощения из окружающей среды паров или газов. Увлажнение продуктов происходит в том случае, если давление водяных паров в воздухе превышает давление водяных паров на поверхности продуктов в результате испарения из них части свободной влаги. Продукты поглощают влагу в этом случае как за счет адсорбции (образование тонкого слоя на их поверхности) и абсорбции (путем объемного поглощения гидрофильными веществами), так и в результате капиллярной конденсации (при наличии микро- и макрокапилляров. Поглощение продуктом паров или газов с образованием химических соединений называется хемосорбцией.
Гигроскопичность - способность продуктов сорбировать влагу из окружающей среды. Поглощать влагу могут сухие и относительно-сухие продукты (мука, крупы, зерно, сахара, сухое молоко и другие), а также богатые белком, крахмалом, фруктозой, инвертным сахаром. Продукты, богатые жиром, или содержащие очень много влаги, не поглощают ее. Когда давление водяных паров на поверхности продукта больше, чем давление водяных паров в воздухе, происходит десорбция. Сорбция и десорбция влаги продуктом осуществляются до приобретения им равновесной влажности, когда давление водяного пара в воздухе и на поверхности продукта становятся равными. Поглощение продуктом влаги зависит от его химического состава, структуры, а также температуры, давления и относительной влажности воздуха. Относительная влажность воздуха есть отношение абсолютного количества влаги в воздухе к количеству воды при наибольшем насыщении при данной температуре, выражается в процентах, измеряется гигрометром или психрометром.