Гидратированное соевое масло. Товароведная характеристика соевого масла. Где применяют соевое масло

06.03.2020 Калорийность продуктов

На масложировых предприятиях страны вырабатывают широкий ассортимент растительных масел из отечественного и импортного сырья: подсолнечное, хлопковое, соевое, горчичное, кукурузное, кокосовое, кунжутное, оливковое, рапсовое, арахисовое, косточковое, льняное, касторовое и др.

В зависимости от способа очистки растительного масла выпускают следующие виды растительного масла для розничной торговой сети и сети общественного питания: нерафинированное, подвергнутое только механической очистке; гидратированное, подвергнутое механической очистке и гидратации; рафинированное недезодорированное, подвергнутое механической очистке, гидратации и нейтрализации; рафинированное дезодорированное.

Подсолнечное масло

Подсолнечное масло получают из семян подсолнечника методом прессования и экстрагирования. Производство этого масла в России составляет около 70 % выпуска всех растительных масел. В его состав входят незаменимые жирные кислоты, каротины, витамин Е.

Нерафинированное масло имеет выраженный вкус и запах поджаренных подсолнечных семян, светло-желтый цвет, допускается небольшой осадок. По качеству его делят на три сорта – высший, 1-й, 2-й. Масло высшего и 1-го сортов должно быть прозрачным, допускаются лишь отдельные мельчайшие частицы воскоподобных веществ. В масле 2-го сорта может быть легкое помутнение.

Гидратированное масло вырабатывают высшего, 1-го и 2-го сортов. В отличие от нерафинированного масла не имеет осадка.

Во 2-м сорте допускается легкое помутнение.

Рафинированное масло выпускают недезодорированным и дезодорированным. Дезодорированное масло по вкусу и запаху является обезличенным, недезодорированное имеет слегка выраженный вкус и запах подсолнечных семян, масло прозрачное, не содержит отстоя. Для поставки в торговую сеть и на предприятия общественного питания предназначается дезодорированное рафинированное подсолнечное масло.

Хлопковое масло

Хлопковое масло получают из семян хлопчатника прессовым и экстракционным способами. Выработка хлопкового масла составляет более 20% общего объема производства растительных масел в нашей стране. Особенностью хлопковых семян является содержание в них специфичного пигмента (госсипола), который придает маслу интенсивный коричневый и бурый цвет. Госсипол обладает ядовитыми свойствами, поэтому в пищу хлопковое масло употребляют только после рафинации.

Рафинированное хлопковое масло подразделяют на рафинированное недозорированное и рафинированное дезодорированное. Рафинированное дезодорированное хлопковое масло подразделяют на высший и 1-й сорта, а рафинированное недезодорированное масло на высший, 1-й и 2-й. Для пищевых целей используют высший и 1-й сорта. Рафинированное хлопковое масло имеет светло-желтый цвет и не содержит отстоя. Масло должно быть без запаха и отстоя, постороннего вкуса.

Соевое масло

Соевое масло получают из семян сои методами прессования и экстрагирования. Выработка этого масла составляет около 9% общего объема производства растительных масел в России. Наряду с маслом важными компонентами семян сои являются белки (30-50%) и фосфатиды (0,55-0,60%), белки сои обладают высокой биологической ценностью и используются для пищевых и кормовых целей.

Соевое масло выпускают следующих видов; гидратированное, рафинированное недезодорированное и рафинированное дезодорированное. Гидратированное масло по качеству подразделяют на 1-й и 2-й сорта, рафинированное на сорта не делят. Для торговой сети и общественного питания рекомендуется рафинированное дезодорированное соевое масло и гидратированное масло 1-го сорта.

Для соевого масла характерны бурые оттенки цвета. Масло должно быть прозрачным, без отстоя.

Кукурузное масло

Кукурузное масло получают из зародышей семян кукурузы, которые содержат от 30 до 50% жира. При производстве маисового крахмала и муки зародыш отделяется от остальной части зерна, так как большое содержание в нем жира отрицательно влияет на качество этих продуктов.

Вырабатывают кукурузное масло нерафинированное, рафинированное дезодорированное и рафинированное недезодорированное. В торговую сеть и на предприятия общественного питания направляется рафинированное дезодорированное масло. Это масло без запаха, имеет желтый цвет, не содержит осадка, вкус обезличенный. На сорта его не подразделяют.

Биологическая активность кукурузного масла обусловлена высоким содержанием в нем биологически активной линолевой кислоты, а также витамина Е (75 мг на 100 мл масла).

Горчичное масло

Горчичное масло вырабатывают из семян горчицы методом прессования: жмых используют для получения горчичного порошка. Горчица содержит вещества, которые придают маслу специфический вкус и аромат, к таким веществам относят тиогликозиды и продукты их гидролиза.

Выпускают горчичное масло нерафинированным, высшего, 1-го и 2-го сортов. Для непосредственного употребления в пищу предназначается масло высшего и 1-го сортов. Масло имеет светло-коричневый цвет. Ввиду выраженных вкуса и аромата горчичное масло применяется в консервном производстве.

Оливковое масло

Оливковое масло получают из мякоти плодов оливкового дерева, произрастающего на Кавказском побережье, в зоне Средиземноморья и др. Масло прессового способа имеет золотисто-желтый цвет, иногда с зеленоватым оттенком. Рафинированное оливковое масло почти бесцветно, имеет едва уловимый запах, приятный вкус. Оливковое масло содержит от 55 до 85% ценной олеиновой кислоты.

Льняное масло

Льняное масло вырабатывают из семян льна методами прессования и экстрагирования. Оно содержит около 50% линоленовой кислоты, поэтому нестойко при хранении, быстро окисляется на воздухе, приобретая специфический запах олифы. Льняное масло используется главным образом для технических целей, хотя имеет пищевую ценность и лечебные свойства, о чем расскажем ниже.

Ореховое масло

Ореховое масло получают из ядер грецкого ореха, в которых до 58 % жира. Ореховое масло получают холодным прессованием. Оно имеет светло-желтый цвет, приятные вкус и запах. Широко применяется в кондитерском производстве.

Арахисовое масло

Арахисовое масло вырабатывается из ядра арахиса (земляного ореха). Рафинированное масло, полученное холодным прессованием, обладает хорошим вкусом и приятным запахом. Используют его как заправку для салатов и для обжаривания. Применяется арахисовое масло также в кондитерском производстве.

Пихтовое масло

Пихтовое масло получают из хвои пихты сибирской. Используется как лекарственный препарат с применением при ряде заболеваний, данные о чем будут приведены в других категориях на нашем сайте.

Облепиховое масло

Облепиховое масло вырабатывается из плодов облепихи крушиновидной. Содержит каротиноиды в концентрации выше 50 мг %, комплекс витаминов С, Р, А, Е. Обладает многосторонним действием. Используется как пищевое и лекарственное средство (см. ниже).

Кедровое масло

Кедровое масло вырабатывается из кедровых орешков. Имеет многокомпонентный состав. Используется с пищевой и лечебной целями, имеет высокую биологическую активность.

Указанным перечнем не ограничивается использование растительных масел.

В лечебной практике также используются масляные настои многих лекарственных растений, которые применяются по определенным показаниям. Именно таким маслам мы также посвятили отдельный раздел нашей книги – о рецептах целебных масел из лекарственных растений.

Соевое масло - жидкое растительное масло, получаемое из семян сои.

Соевое масло вырабатывается прессованием или экстракцией из семян сои. В зависимости от способа обработки соевое масло подразделяют на виды: гидратированное 1-го и 2-го сортов, рафинированное неотбеленное, рафинированное отбеленное, рафинированное дезодорированное. Для предприятий общественного питания предназначается соевое масло гидратированное 1-го сорта (прессовое), рафинированное дезодорированное и рафинированное неотбеленное (прессовое).

Все виды соевого масла должны быть прозрачными, в гидратированном масле 2-го сорта допускается легкое помутнение. Рафинированное дезодорированное соевое масло имеет вкус обезличенного масла, без запаха, остальные виды должны иметь свойственные соевому маслу вкус, запах, без посторонних запаха и привкуса. Содержание токсических элементов, пестицидов, микотоксинов в рафинированном дезодорированном масле подсолнечном и кукурузном марки Д и П, а также в прессовом подсолнечном масле, соевом, предназначенных для непосредственного употребления в пищу, не должно превышать допустимые уровни, утвержденные Министерством здравоохранения. Сырое соевое масло имеет коричневый с зеленоватым оттенок, а рафинированное - светло-желтый. Соевое масло употребляют в пищу и как сырьё для производства маргарина. В пищу используется только рафинированное масло. Соевое масло используется так же, как и подсолнечное. В готовке лучше подходит для овощей, чем для мяса.

Соевое масло содержит рекордное количество витамина Е 1 (токоферола), который участвует в образовании мужского семени. На 100 г масла приходится 114 мг витамина. Для примера: в таком же количестве подсолнечного масла токоферола всего 67 мг, в оливковом и вовсе 13. Витамин E1 полезен и женщинам. Он способствует нормальному течению беременности и развитию плода. Кроме того, токоферол помогает бороться со стрессами, предупреждает сердечно-сосудистые заболевания и расстройства почек.

Из всех растительных масел соевое обладает самой высокой биологической активностью и усваивается организмом на 98%. Соевое масло содержит жизненно необходимые ненасыщенные жирные кислоты, токоферол, являющийся природным антиоксидантом, и лецитин, регулирующий обмен холестерина. Линолевая и линоленовая кислоты, подобно аминокислотам, не синтезируются организмом человека и потому являются незаменимыми. Соевое масло улучшает обмен веществ, укрепляет иммунную систему.

В зависимости от способа обработки и показателей качества соевое масло подразделяют на виды и сорта, указанные в таблице 1.

Таблица 1 - Виды и сорта соевого масла

Для торговой сети и предприятий общественного питания предназначается соевое масло: гидратированное первого сорта (прессовое); рафинированное неотбеленное (прессовое); рафинированное дезодорированное.

Соевое масло фасуют:

  • - в стеклянные бутылки типов IX и XVI массой нетто 500 и 700 г;
  • - в бутылки из окрашенных (или неокрашенных) полимерных материалов, разрешенных к применению органами Госсанэпиднадзора, массой нетто 470, 575 и 1000 г.

Допустимые отклонения от массы нетто, г:

+/- 10 - при фасовании 1000 г;

+/- 5 - при фасовании от 470 до 700 г включительно.

Стеклянные бутылки с соевым маслом должны быть герметично укупорены колпачками из алюминиевой фольги по ГОСТ 745 с картонной уплотнительной прокладкой с целлофановым покрытием или колпачками из целлулоида или пластических масс, разрешенных органами. Бутылки из полимерных материалов укупоривают колпачками из полиэтилена высокого давления низкой плотности по нормативному документу или заваривают.

Бутылки с соевым маслом упаковывают в деревянные многооборотные ящики и пластмассовые многооборотные ящики для бутылок.

Бутылки из полимерных материалов упаковывают также в ящики из гофрированного картона.

Для местной реализации допускается упаковывание бутылок в проволочные многооборотные ящики, а также в тару-оборудование.

Применение других видов упаковок, разрешенных органами санэпиднадзора для растительных масел, не является браковочным фактором. При этом маркировка таких упаковок должна соответствовать требованиям настоящего стандарта. Нефасованное соевое масло наливают в алюминиевые фляги с уплотняющими кольцами из жиростойкой резины и других материалов, разрешенных органами Госсанэпиднадзора в установленном порядке, и в бочки стальные неоцинкованные для пищевых продуктов, а рафинированное отбеленное, рафинированное неотбеленное и гидратированное соевое масло по согласованию с потребителем наливают в тару потребителя, пригодную для перевозки растительных масел автотранспортом.

Рафинированное дезодорированное соевое масло наливают в стальные неоцинкованные бочки для пищевых продуктов, а также в алюминиевые фляги - только по согласованию с потребителем.

Соевое масло упаковывают по видам и сортам.

Тара, применяемая для упаковывания соевого масла, должна быть чистой, сухой и не иметь посторонних запахов.

Бочки и фляги для рафинированного дезодорированного соевого масла должны быть тщательно зачищены от остатков хранившегося в них масла, пропарены, вымыты и высушены.

Маркировка

На каждую бутылку с соевым маслом должна быть наклеена красочно оформленная этикетка, на которую наносят маркировку, содержащую:

  • - вид и сорт масла;
  • - гарантийный срок хранения;
  • - массу нетто, г;
  • - дату розлива;
  • - калорийность 100 г масла (рафинированного - 899 ккал, гидратиро-ванного - 898 ккал);
  • - срок годности;
  • - информацию о сертификации;

Маркировку способом тиснения или с помощью излучения импульсно-периодического лазера наносят непосредственно на бутылку из полимерных материалов.

Дату розлива соевого масла проставляют компостером на этикетке, тиснением на колпачке, лазером или любым другим способом, обеспечивающим четкое ее обозначение.

На каждую упаковочную единицу с маслом дополнительно наносят маркировку, характеризующую продукцию:

  • - наименование предприятия-изготовителя, его местонахождение и его товарный знак;
  • - вид и сорт масла;
  • - количество бутылок в единице упаковки или массу нетто для нефасованного масла;
  • - дату налива для бочек и фляг или дату розлива для бутылок;
  • - срок годности;
  • - информацию о сертификации;
  • - обозначение настоящего стандарта.

При упаковывании бутылок с маслом в открытые ящики маркировка ящиков не производится.

Соевое масло в бутылках должно храниться в закрытых затемненных помещениях, во флягах и бочках - в закрытых помещениях.

АННОТАЦИЯ

В работе исследована переработка соевого масла с целью получения фосфотидного концентрата и гидрированного жира. Определены оптимальные режимы процессов гидратации и гидрогенизации соевого масла. Разработаны рецептуры маргарина из местного жирового сырья: соевого масла, хлопкового масла и их саломасов, а также исследованы физико-химические показатели полученного маргарина.

ABSTRACT

In the work investigated the processing of soybean oil in order to obtain a phosphotide concentrate and hydrogenated fat. The optimal modes of water degumming and hydrogenation processes of soybean oil are determined. Developed the formulation of margarine from local fatty materials: soybean oil, cottonseed oil and their hydrogenated oils, and also investigated the physico-chemical parameters of the obtained margarine.

Ключевые слова: соевое масло, хлопковое масло, маргарин, саломас, янтарная кислота, жирнокислотный состав, ненасыщенные жирные кислоты, структурообразователь, диетический маргарин.

Keywords: margarine, hydrogenated oil, succinic acid, fatty acid composition, unsaturated fatty acids, structure- forming agent, dietary margarine.

Соевые бобы выращиваются в нескольких странах мира, и получают из них соевое масло. Восточная Азия является родиной сои, и она была важной частью рациона питания в течение многих столетий. Соя выращивалась в Узбекистане уже с 1932 г., но оставалась сельскохозяйственной диковинкой и имела незначительные урожаи в течение более чем полувека. В настоящее время началось выращивание сои на государственном уровне .

Соевое масло получают из семян сои прессованием или экстракцией. Наряду с маслом важными компонентами семян сои являются белки (30-50%) и фосфатиды (0,55-0,60%).

Соевое масло широко используется в пищевой промышленности, а также в домашнем хозяйстве для заправки салатов из сырых или вареных овощей (содержание ненасыщенных жирных кислот в нем около 60%). В промышленных масштабах его часто используют в качестве сырья для производства маргарина и майонеза. Соевое масло содержит линоленовую, линолевую, олеиновую, арахиновую, пальмитиновую, стеариновую жирные кислоты, витамины Е, В 4 , K, а также минеральные элементы .

Известно, что полиненасыщенные жирные кислоты избавляют организм от плохого холестерина. Кроме того, соевое масло богато фитоэстрогенами (растительные гормоны), которые оздоровляют флору желудочно-кишечного тракта. Соевое масло нормализует процессы свертывания крови, обогащает организм железом. Соевое масло является источником лецитина, который широко применяют в пищевой и фармацевтической промышленности .

Сначала исследована гидратация соевого масла в лабораторных условиях и получен фосфатидный концентрат.

При производстве диетических маргаринов, майонезов, комбинированных масел и спредов в качестве эмульгатора и пищевых биологически активных добавок применяются пищевые растительные фосфолипиды .

Фосфолипиды извлекаются из жидких растительных масел (соевое, подсолнечное, рапсовое, кукурузное) путем гидратации с целью производства самостоятельных продуктов, называемых фосфатидными концентратами, различного состава и свойств. Из-за дифильного характера молекул фосфолипидов они являются поверхностно-активными веществами (ПАВ).

С целью установления оптимальных условий гидратации и определения оптимального количества воды мы провели комплекс исследований по гидратации соевого масла.

В опытах использованы нерафинированное форпрессовое соевое масло со следующими показателями: кислотное число – 2,5 мг КОН, цветное число – 50 мг йода, массовая доля влаги и летучих веществ – 0,2%, массовая доля нежировых примесей (отстой на массе) – 0,2%. Для определения влияния количества воды на показатели масла применяли следующие количества воды: 1,0; 2,0; 3,0; 4,0; 5,0; 6,0%.

В таблице 1 приведены результаты опытов, из которых следует, что с увеличением количества воды уменьшается кислотное число гидратированного соевого масла и увеличивается выход гидратированного осадка.

Таблица 1.

Влияние количества воды на показатели форпрессового соевого масла

Количество воды, % Кислотное число, мг КОН Влажность, % Выход, %
Гидратационного осадка Масла
1 2 3 4 5 6
1 1,0 1,98 0,04 2,91 95,93
2 2,0 1,94 0,04 3,93 96,42
3 3,0 1,87 0,05 4,52 96,71
4 4,0 1,79 0,05 5,84 95,81
5 5,0 1,66 0,06 6,91 95,31
6 6,0 1,64 0,06 7,43 94,89

С увеличением количества воды с 1,0 до 3% выход гидратированного масла увеличивается с 95,93% до 96,71% и выход гидратационного осадка – с 2,91% до 4,52%. Однако дальнейшее увеличение количества воды с 4 до 6% приводит к снижению выхода гидратационного масла с 95,81 до 94,89%, а выход гидратационного осадка увеличивается с 5,49 до 6,95%. При проведении экспериментов кислотное число гидратированного масла снижается с 1,98 до 1,64 мг КОН, а влажность масла увеличивается с 0,04 до 0,06%.

На основании проведенных исследований пришли к заключению, что оптимальное количество воды для гидратации соевого масла составляет 2-3%.

При гидратации нерафинированных растительных масел наряду с гидратированным маслом получают осадок, называемый фосфатидная эмульсия. Фосфатидная эмульсия состоит из воды, фосфолипидов и увлеченного в осадок растительного масла. После сушки фосфатидной эмульсии в вакууме получают фосфатидный концентрат.

Для получения фосфолипидного концентрата мы исследовали режимы сушки фосфолипидной эмульсии. Фосфолипидную эмульсию, полученную после гидратации, сушили в лабораторной установке при температурах 60-90ºC. При этом изучали влияние температуры процесса на длительность сушки. Высушивание фосфолипидной эмульсии проводили до достижения фосфатидного концентрата с содержанием влаги до 1-3%. Результаты опытов представлены на рисунке 1.

Рисунок 1. Влияние температуры процесса сушки фосфолипидного концентрата на его продолжительность

Показано, что сушка при температуре 70-90ºС в течение 30-50 мин. обеспечивает снижение влажности до значений, регламентированных ГОСТ.

Повышение температуры при сушке фосфолипидной эмульсии способствует усилению окислительных процессов. Протекание окислительных процессов контролировали путем определения перекисного числа получаемого фосфатидного концентрата. Установлено, что при температуре выше 80°С значительно повышается скорость окислительных процессов, т. е. происходит возрастание перекисного числа концентрата (рис. 2).

Рисунок 2. Влияние температуры сушки фосфолипидной эмульсии на перекисное число

Таким образом, были установлены следующие оптимальные режимы сушки фосфолипидной эмульсии: температура – 70-80 о С, остаточное давление – 5 кПа, продолжительность сушки – 50 минут.

В результате исследования физико-химических показателей фосфатидного концентрата были получены следующие результаты: цветное число – 12 мг йода, содержание влаги и летучих веществ – 0,9%, содержание фосфатидов – 55,0%, содержание масла – 43,0%, содержание веществ, не растворимых в этиловом эфире – 2,5%, кислотное число масла, выделенного из фосфатидного концентрата, – 8 мг КОН, перекисное число – 3,4 моль актив. кислорода/кг.

Установлено, что показатели качества полученного фосфатидного концентрата соответствуют требованиям ГОСТа и он является конкурентоспособным по отношению к импортному фосфатидному концентрату.

Маргарин – эмульсия обратного типа, состоящая из воды и жира. Основным сырьем для маргарина являются растительные масла в жидком и гидрированном виде, а также животные жиры. Наиболее широко применяются подсолнечное, хлопковое и соевое масла.

Незаменимые полиненасыщенные жирные кислоты, фосфатиды (полученные с помощью гидратации из растительных масел), витамины в составе маргарина определяют его пищевую и биологическую ценность.

Жирнокислотный состав маргарина определяет его назначение. Так, например, в жирнокислотном составе диетического маргарина для лиц пожилого возраста с нарушенным липидным обменом должна содержаться линолевая кислота на уровне 50%. В зависимости от целевых назначений диетического маргарина вводятся фосфатиды и витамины в определенном количестве.

На основе вышеописанных данных мы разработали рецептуры маргарина из местного жирового сырья: соевого, хлопкового масел и их саломасов, а также исследовали физико-химические свойства полученного маргарина.

Основным сырьем для производства маргарина является пищевой саломас. Саломас – продукт, получаемый путем гидрогенизации растительных масел и животных жиров.

Путем частичного (селективного) гидрирования растительных масел и их смесей с животными жирами получают пластичные жиры, с температурой плавления 31-34 о С, твердостью 160-320 г/см и йодным числом 62-82, предназначенные для использования в качестве основного (структурирующего) компонента маргаринов и кулинарных жиров.

Гидрогенизация соевого масла является одним из перспективных способов производства твердых саломасов пищевого и технического назначения. Для осуществления данного процесса предложены различные виды катализаторов: никелевые, никель-медные и никель-хромовые.

Гидрогенизация соевогомасла относится к сложным гетерогенным каталитическим процессам, где наряду с насыщением этиленовых связей водородом протекает множество побочных реакций, влияющих на качество целевого продукта с заданными свойствами. При использовании сравнительно активных катализаторов наблюдается характерное для гидрирования соевого масла «отставание» температуры плавления и в особенности твердости саломаса от степени его ненасыщенности. Кроме того, из-за высокой ненасыщенности масла продолжительность процесса гидрогенизации увеличивается.

Для устранения этих недостатков и увеличения скорости гидрирования целесообразно гидрировать в виде его смесей с другими маслами, например с хлопковым. Кроме того, известно, что пассивированные катализаторы обладают наибольшей изомеризующей способностью в отношении мононенасыщенных кислот. Это способствует получению гидрогенизата с высокой твердостью. Поэтому гидрировали смеси соевого (йодное число 137,1 J 2 %) и хлопкового (йодное число 108,5 J 2 %) масел в присутствии высокоактивного (N-820) и пассивированного (N-210) никелевого катализатора при температуре 180-200 о С. Количество катализатора и продолжительность процесса при гидрировании составляло соответственно 0,1%, 0,2% и 90 мин. Полученные саломасы для отделения катализатора фильтровались через бумажный фильтр при температуре 80 о С. Результаты опытов представлены в табл. 2.

Таблица 2.

Влияние состава масла и активности катализатора на физико-химические показатели гидрогенизатов

Массовая доля соевого масла в смеси, %

Йодное число, % J 2

Температура плавления, о С

Кислотное число, мг КОН

Катализатор - N-820
5 54,4 44,2 0,94
10 56,2 42,6 1,23
20 59,7 38,2 0,96
30 63,3 35,6 1,34
40 67,7 31,1 1,28
50 73,4 28,6 1,08
60 78,8 26,2 1,26
Катализатор - N-210
5 60,6 38,6 0,82
10 63,3 38,8 1,13
20 65,8 36,5 0,98
30 66,8 35,8 1,03
40 73,4 32,4 1,18
50 78,2 30,1 0,92
60 85,3 28,6 1,15

Как свидетельствуют данные табл. 2, с повышением массовой доли соевого масла в смеси от 5 до 30 снижается температура плавления саломаса. Следует отметить, что саломасы, полученные в присутствии пассивированного катализатора, имеют низкую температуру плавления и кислотного числа в отличие от полученных на высоком активном катализаторе. Кроме того, использование пассивированного катализатора способствует повышению селективности процесса гидрирования.

Анализируя полученные данные, можно сделать вывод, что гидрирование соевого масла и его смеси с хлопковым маслом в присутствии пассивированного никелевого катализатора дает возможность получения пищевого саломаса, отвечающего требованиям ГОСТа.

При длительном хранении стойкость маргаринов тесно связана с их консистенцией, в частности со степенью дисперсности влаги в продукте. Высокая степень дисперсности влаги и воздуха в таких продуктах может быть достигнута только при использовании эмульгаторов и стабилизаторов структуры. Поверхностное окисление маргарина, или, как говорят, штафф, ухудшает внешний вид, вкус и запах продуктов.

Новые разновидности таких продуктов можно разделить на виды, при выработке которых не используют эмульгаторы и стабилизаторы структуры, маргаринов, в состав которых вводят структурообразователи.

Для улучшения качества маргаринов и повышения термоустойчивости продукта рекомендуется использовать структурообразователи – низкойодные саломасы. Низкойодные саломасы повышают прочность кристаллической решетки продукта, способствуют удерживанию низкоплавких жировых фракций. Это позволяет вырабатывать термоустойчивое масло, которое даже при повышенных режимах хранения и реализации продукции сохраняет свой товарный вид.

Низкойодные саломасы часто называют полностью гидро-генизированными твердыми жирами, или стеаринами, однако нормативные документы требуют нулевого значения йодного числа лишь для полностью насыщенных жиров. Поскольку для проведения гидрогенизации этих жиров единственным критерием является активность катализатора, можно применять повторно исполь­зуемый катализатор. Обычно для максимального ускорения реакции используют высокое давление и высокую температуру. Однако получение низкойодного саломаса является очень трудоемким, особенно от высоконенасыщенного соевого масла. Поэтому мы исследовали получение низкойодного саломаса из хлопкового масла.

Для получения низкойодного саломаса осуществляется глубокое гидрирование хлопкового масла на порошкообразных никелевых катализа­торах путем дробной подачи катализатора.

Поэтому с целью интенсификации процесса гидрогенизации и стабилизации активности катализатора хлопковое масло (йодное число – 108,5 J 2 %, цветность – 8 кр. ед., кислотное число – 0,2 мг КОН/г, содержание влаги летучих веществ – 0,2%,) гидрировали с вводом катализатора в два этапа, т. е. производили дробную подачу. Гидрирование проводилось при температуре 180 о С, при атмосферном давлении водорода и скорости подачи водорода на барботаж 3 л/мин. в течение 3 ч. При этом количество N-820 катализатора в пересчете на никель составляло 0,2% от массы масла. Загрузка катализатора в начале процесса составляла 50-60%, а через час, во втором этапе, остальные 40-50% от общего количества подаваемого катализатора. Йодное число сырья и гидрогенизата определяли рефрактометрическим методом, а температуру плавления и кислотное число масла – по известной методике .

Как показали полученные результаты, дробная загрузка катализатора позволяет в лабораторных условиях сократить в 1,4-1,7 раза длительность глубокого гидрирования хлопкового масла при получении низкойодного и высокотитрового саломаса. Полученные саломасы по йодному числу (5-8 J 2 %) и температуре плавления (не ниже 60 о С) отвечают требованиям, предъявляемым к низкойодному саломасу – сырью для использования как структурообразователя при производстве маргарина.

На основе полученных в лабораторных условиях компонентов мы проводили исследования для создания рецептуры диетического маргарина с оптимизированными свойствами. В исследовании использованы пищевой саломас, саломас из смеси хлопкового и соевого масел, хлопковый пальмитин, соевое и хлопковое масла, эмульгатор, фосфатидный концентрат и другие компоненты. Из-за введения молока и высоконенасыщенного соевого масла в рецептуру добавляют лимонную кислоту. Также добавляют янтарную кислоту для повышения дисперсности и стабильности к окислению маргарина.

Предлагаемый рецепт маргарина показан в таблице 3.

Таблица 3.

Рецептура маргарина

Компоненты маргарина

Образцы
1 2 3

Саломас, Т пл 31-34 о С, твердость 160-320 г/см

30 20 15
Саломас, Т пл 35-36 о С, твердость 350-410 г/см 15 10 5
Саломас из смеси хлопкового и соевого масел 6 10 15
Пальмитин хлопковый Т пл 20-25 о С - 10 15
Соевое масло 15 15 15
Хлопковое масло 15 15 15
Структурообразователь (глубокогидрированное масло) - 1 1
Краситель 0,1 0,1 0,1
Эмульгатор 0,2 0,2 0,2
Молоко 10 10 10
Соль 0,35 0,35 0,35
Концентрат фосфатидный пищевой 2,0 2,0 2,0
Сахар 0,3 0,3 0,3
Янтарная кислота 0,05 0 0,03
Лимонная кислота 0 0,05 0,02
Вода 6 6 6
Всего 100 100 100
Массовая доля жира, % не менее 82 82 82

На основе составленной рецептуры приготовлен маргарин в лабораторных условиях. Для этого смесь рецептурных компонентов перемешивают до получения однородной эмульсии и переохлаждают.

Полученный маргарин обладает высокой пластичностью, большей степенью дисперсности, технологичностью, стойкостью, стабильностью к окислению. Кроме того, добавление пищевых растительных фосфолипидов и янтарной кислоты повышает пищевую ценность предлагаемого маргарина.

В результате проведенных экспериментов было установлено, что использование в составе маргарина структурообразователя – глубокогидрированного хлопкового масла, подобранного его количественного содержания и растительных масел дало возможность частичного вывода из рецептуры маргарина саломаса (гидрированного жира), что позволило получить продукт с низким содержанием транс-изомеров.

Список литературы:
1. Лабораторный практикум по технологии переработки жиров. – 2-е изд., перераб. и доп. / Н.С. Арутюнян, Л.И. Янова, Е.А. Аришева и др. – M.: Агропромиздат, 1991. – 160 с.
2. Петибская В.С. Соя: химический состав и использование. – Майкоп: Полиграф-ЮГ, 2012. – С. 432.
3. Постановление Президента Республики Узбекистан от 14 марта 2017 года № ПП-2832 «О мерах по организации посева сои и увеличению возделывания соевых бобов в республике на 2017-2021 годы» // Все законодательсвто Узбекистана [Электронный ресурс] – Режим доступа: https://nrm.uz/contentf?doc=509888_&products=1_vse_zakonodatelstvo_uzbekistana (дата обращения: 10.12.2018).
4. Практическое руководство по переработке и использованию сои / Под ред. Д. Эриксона; пер с англ. – М.: Макцентр, 2002. – С.659
5. Терещук Л.В., Савельев И.Д., Старовойтова К.В. Эмульгирующие системы в производстве молочно-жировых эмульсионных продуктов // Техника и технология пищевых производств. – 2010. – № 4. – С.108

Соевое масло сыродавленное – полезный, нерафинированный продукт, который в нашей стране незаслуженно отодвинут на второй план. Многие считают, что вся соя модифицирована на генетическом уровне и лучше отказаться от ее употребления. Но это ошибочное мнение. Соя такой же полезный и вкусный бобовый продукт, как горох или фасоль. В ней содержатся сильнейшие иммуномодуляторы и антиоксиданты, например, токоферолом Е1. В 100 граммах нерафинированного соевого сыродавленного продукта насчитывается 114 мг этого вещества. В том же количестве оливкового масла его всего 13 мг, а в подсолнечном 67 мг.

Польза или вред от соевого масла

Соевое масло гидратированное и сыродавленное представляет собой чистый, жидкий жир, в котором нет белков и углеводов, но есть огромное количество витамина Е двух форм: витамин Е1, витамин Е2. Только такая форма полностью усваивается организмом и оказывает благоприятное воздействие на кожу, волосы, ногти, зрение. Кальций, калий, натрий, фосфор, магний, лецитин, полиненасыщенные и насыщенные кислоты, линолевая, стеариновая, олеиновая и другие кислоты способствуют:
  • омоложению клеток;
  • препятствуют развитию онкологических заболеваний;
  • не дают образовываться холестериновым бляшкам в сосудах.
Компания Агрозернохолдинг предлагает купить соевое масло сыродавленное гидратированное оптом по выгодной цене. Еще данный продукт:
  • является отличным профилактическим средством сердечно-сосудистых заболеваний;
  • укрепляет иммунную систему;
  • предупреждает развитие атеросклероза;
  • улучшает работу желудочно-кишечного тракта;
  • стимулирует функцию почек;
  • ускоряет обмен веществ;
  • укрепляет нервную систему.
Соевая продукция очень популярна у жителей Японии, Китая, Америки и Западной Европы. Кому противопоказано соевое масло?
  • Людям, склонным к аллергии на входящие компоненты.
  • Тем, кто имеют болезни желудка и часто страдают расстройствами.
  • Опухоли мозга и индивидуальная непереносимость.

Технология производства соевого масла сыродавленного, гидратированного

Сыродавленное масло считается самым полезным, так как его получают путем естественного прессования без воздействия химикатов и высоких температур. По ГОСТу допускается осадок и помутнение. Срок хранения такого продукта невелик – всего месяц, но в нем сохраняются все полезные вещества. Гидратированное масло подвергают медленному охлаждению для удаления фосфорсодержащих веществ, которые образуют осадок. Такой продукт хранится дольше – до трех месяцев.

Где применяют соевое масло

Продукция нашла широкое применение в кулинарии. Из нее изготавливают маргарин, майонез и другие соусы. Соевое масло отлично подчеркивает вкус салатов и сочетается с морепродуктами, яйцами, рисом. Им заправляют рыбу и мясо, добавляют в выпечку. Еще продукт очень популярен в косметологии. На его основе делают маски и кремы для лица, которые эффективно увлажняют и питают кожу. В домашних условиях сыродавленным маслом рекомендуют снимать макияж перед сном, наносить его на кожу головы для укрепления и оздоровления волос. Широкий спектр применения соя нашла и в медицине. На ее основе делают лекарства для больных диабетом, язвенной болезнью, гастритами, колитами. Лекарства назначают пациентам, страдающим заболеваниями почек, печени. Продукция спасает жизни людей, подвергшихся радиационному облучению. Украина выращивает и перерабатывает сою с незапамятных времен и по праву входит в список стран производителей продуктов из сои.

Где можно купить в Украине соевое масло сыродавленное гидратированное

На нашем сайте вы найдете каталог соевого масла с фото, расценками и подробной информацией о доставке. Вы можете узнать, сколько стоит соевое масло сыродавленное гидратированное и купить нужное количество с доставкой по Украине. Опытные менеджеры помогут быстро рассчитать стоимость партии. Цена соевого масла зависит от объемов покупки.

Изобретение относится к масложировой промышленности. Способ включает смешивание нерафинированного масла с гидратирующим агентом, экспозицию полученной смеси, отделение фосфолипидной эмульсии от гидратированного масла. В качестве гидратирующего агента используют смесь, состоящую из белков, полученных из зерна злаковых, фосфолипидов, полученных из растительного масла и воды, при соотношении по массе (1:2:100)÷(1:3:100) соответственно, в количестве 1-4% к массе нерафинированного растительного масла. Изобретение позволяет получить высококачественные гидратированные масла с низким содержанием фосфолипидов и низкими цветным и кислотным числами. 2 табл.

Изобретение относится к масложировой промышленности и может быть использовано для гидратации растительных масел.

Известен способ гидратации растительного масла, включающий смешивание нерафинированного масла с гидратирующим агентом, экспозицию полученной смеси, последующее разделение фаз на гидратированное масло и фосфолипидную эмульсию и сушку гидратированного масла и фосфолипидной эмульсии (Н.С.Арутюнян. Рафинация масел и жиров: Теоретические основы, практика, технология, оборудование / Н.С.Арутюнян, Е.П.Корнена, Е.А.Нестерова. - СПб.: ГИОРД, 2004. - С.82-99).

К недостаткам способа относятся низкая степень гидратации фосфолипидов, высокая цветность гидратированных масел, что при последующей рафинации требует более высокой концентрации щелочного агента и его избытка, большой расход отбеливающих глин, в результате чего снижается выход рафинированного масла.

Задача изобретения - создание высокоэффективного способа гидратации растительного масла.

Задача решается тем, что в способе гидратации растительного масла, включающем смешивание нерафинированного масла с гидратирующим агентом, экспозицию полученной смеси, отделение фосфолипидной эмульсии от гидратированного масла, в качестве гидратирующего агента используют смесь, состоящую из белков, полученных из зерна злаковых, фосфолипидов, полученных из растительного масла, и воды, при соотношении по массе (1:2:100)÷(1:3:100) соответственно, в количестве 1-4% к массе нерафинированного растительного масла.

Техническим результатом является получение гидратированного масла высокого качества с низким содержанием фосфолипидов, а также с низкими цветным и кислотным числами.

Экспериментально было показано, что применение в качестве гидратирующего агента смеси, состоящей из белков, фосфолипидов и воды, позволяет снизить межфазное натяжение на границе раздела фаз «нерафинированное масло - гидратирующий агент», что увеличивает на межфазной поверхности адсорбцию как гидратируемых, так и негидратируемых фосфолипидов, а также красящих веществ.

Заявляемый способ поясняется следующими примерами.

Пример 1. Предварительно получают фосфолипиды из соевого масла путем его гидратации с получением фосфолипидной эмульсии и последующей ее сушки, а также белки из зерна пшеницы путем экстракции измельченного зерна пшеницы водой. По окончании экстракции раствор белка отделяют от небелковых компонентов центрифугированием. Из полученного раствора белок осаждают минеральной кислотой, а осадок отделяют центрифугированием. Затем готовят смесь, состоящую из белков, фосфолипидов и воды в соотношении по массе 1:2:100 соответственно.

Нерафинированное прессовое подсолнечное масло смешивают при температуре 60°С с гидратирующим агентом, в качестве которого используют смесь, полученную из белков, фосфолипидов и воды, в количестве 1% к массе нерафинированного прессового подсолнечного масла. Затем полученную смесь подвергают экспозиции в течение 10 минут и направляют на разделение фаз «гидратированное подсолнечное масло - фосфолипидная эмульсия». Гидратированное масло и фосфолипидную эмульсию сушат по известным режимам.

Основные показатели масел, полученных по заявляемому и известному способам, приведены в таблице 1.

Пример 2. Предварительно получают фосфолипиды из нерафинированного подсолнечного масла путем его гидратации с получением фосфолипидной эмульсии и последующей ее сушки, а также белки из зерна ячменя путем экстракции измельченного зерна ячменя водой. По окончании экстракции раствор белка отделяют от небелковых компонентов центрифугированием. Из полученного раствора белок осаждают минеральной кислотой, а осадок отделяют центрифугированием. Затем готовят смесь, состоящую из белков, фосфолипидов и воды в соотношении по массе 1:3:100 соответственно.

Нерафинированное соевое масло смешивают при температуре 60°С с гидратирующим агентом, в качестве которого используют смесь, полученную из белков, фосфолипидов и воды, в количестве 4% к массе нерафинированного соевого масла. Затем полученную смесь подвергают экспозиции в течение 20 минут и направляют на разделение фаз «гидратированное соевое масло - фосфолипидная эмульсия». Гидратированное масло и фосфолипидную эмульсию сушат по известным режимам.

Параллельно осуществляют гидратацию известным способом.

Основные показатели масел, полученных по заявляемому и известному способам, приведены в таблице 2.

Как видно из данных таблиц, степень гидратации при осуществлении ее заявляемым способом увеличивается на 14,4-43,9% по сравнению с известным способом, цветное число гидратированного масла снижается на 14-25 мг J 2 , а кислотное число на 0,45-0,50 мг КОН/г.

Таким образом, заявляемый способ гидратации растительного масла позволяет получить высококачественные гидратированные масла.

Способ гидратации растительного масла, включающий смешивание нерафинированного масла с гидратирующим агентом, экспозицию полученной смеси, последующее разделение смеси на гидратированное масло и фосфолипидную эмульсию, сушку гидратированного масла и фосфолипидной эмульсии, отличающийся тем, что в качестве гидратирующего агента используют смесь, состоящую из белков, полученных из зерна злаковых, фосфолипидов, полученных из растительного масла и воды, при соотношении по массе (1:2:100)÷(1:3:100) соответственно, в количестве 1-4% к массе нерафинированного растительного масла.